Riscduino Single Risc Core SOC
Permission to use, copy, modify, and/or distribute this soc for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOC IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOC INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOC.
Riscduino is a Single 32 bit RISC V based SOC design pin compatible to arduino platform and this soc targeted for efabless Shuttle program. This project uses only open source tool set for simulation,synthesis and backend tools. The SOC flow follow the openlane methodology and SOC environment is compatible with efabless/carvel methodology.
* Open sourced under Apache-2.0 License (see LICENSE file) - unrestricted commercial use allowed.
* Single 32 Bit RISC-V core
* 2KB SRAM for instruction cache
* 2KB SRAM for data cache
* 2KB SRAM for Tightly coupled memory - For Data Memory
* Quad SPI Master with 4 Chip select, supports both SPI flash and SRAM interface
* 2 x UART with 16Byte FIFO
* USB 1.1 Host
* I2C Master
* UART Master
* Simple SPI Master with 4 Chip select
* 6 Channel ADC (in Progress)
* 6 x PWM
* 3 x Timer (16 Bit), 1us/1ms/1second resolution
* 2 x ws281x driver
* 16 Hardware Semaphore
* FPU (SP) Core
* AES 128 Bit Core
* RTC Core
* Pin Compatbible to arduino uno
* Wishbone compatible design
* Written in System Verilog
* Open-source tool set
* simulation - iverilog
* synthesis - yosys
* backend/sta - openlane tool set
* Verification suite provided.
MPW | Tape-out | Project Name | Project Details | Github | Efabless | Tapeout Link |
MPW-2 | 18-June-2021 | YiFive | Single 32bit RISCV core without cache + SDRAM Controller + WB Interconnect | Link | Link | Link |
MPW-3 | 15-Nov-2021 | Riscduino | Single 32bit RISCV core without cache + Onchip SRAM + WB Interconnect | Link | Link | Link |
MPW-4 | 31-Dec-2021 | Riscduino-R1 | Single 32bit RISCV core with cache + Onchip SRAM + WB Inter Connect | Link | Link | Link |
MPW-5 | 21-Mar-2022 | Riscduino-DCORE (D0) | Dual 32bit RISCV core with cache + Onchip SRAM+ WB Cross Bar | Link | Link | Link |
MPW-5 | 21-Mar-2022 | Riscduino-QCORE (Q0) | Quad 32bit RISCV core with cache + Onchip SRAM+ WB Cross Bar | Link | Link | Link |
MPW-6 | 07-June-2022 | Riscduino-SCORE (S3) | Single 32bit RISCV core with cache + Onchip SRAM+ WB Cross Bar | Link | Link | Link |
MPW-6 | 07-June-2022 | Riscduino-DCORE (D1) | Dual 32bit RISCV core with cache + Onchip SRAM+ WB Cross Bar | Link | Link | Link |
MPW-6 | 07-June-2022 | Riscduino-QCORE (Q1) | Quad 32bit RISCV core with cache + Onchip SRAM+ WB Cross Bar | Link | Link | Link |
MPW-7 | 12-Sept-2022 | Riscduino-SCORE (S4) | Single 32bit RISCV core with cache + Onchip SRAM+ WB Cross Bar | Link | Link | Link |
MPW-7 | 12-Sept-2022 | Riscduino-DCORE (D3) | Dual 32bit RISCV core with cache + Onchip SRAM+ WB Cross Bar | Link | Link | Link |
MPW-7 | 12-Sept-2022 | Riscduino-QCORE (Q1) | Quad 32bit RISCV core with cache + Onchip SRAM+ WB Cross Bar | Link | Link | Link |
MPW-8 | 31-Dec-2022 | Riscduino-DCORE (D4) | Dual 32bit RISCV core with cache + Onchip SRAM+ WB Cross Bar | Link | Link | Link |
MPW-8 | 12-Sept-2022 | Riscduino-QCORE (Q3) | Quad 32bit RISCV core with cache + Onchip SRAM+ WB Cross Bar | Link | Link | Link |
Carvel SOC provides 38 GPIO pins for user functionality. Riscduino SOC GPIO Pin Mapping as follows vs ATMEGA328 and Arudino
ATMGA328 Pin No | Functionality | Arudino Pin Name | Carvel Pin Mapping |
Pin-1 | PC6/RESET | D20 | digital_io[5] |
Pin-2 | PD0/RXD[0] | D0 | digital_io[6] |
Pin-3 | PD1/TXD[0] | D1 | digital_io[7]/analog_io[0] |
Pin-4 | PD2/RXD[1]/INT0 | D2 | digital_io[8]/analog_io[1] |
Pin-5 | PD3/INT1/OC2B(PWM0) | D3 | digital_io[9]/analog_io[2] |
Pin-6 | PD4/TXD[1] | D4 | digital_io[10]/analog_io[3] |
Pin-7 | VCC | - | |
Pin-8 | GND | - | |
Pin-9 | PB6/XTAL1/TOSC1 | D21 | digital_io[11]/analog_io[4] |
Pin-10 | PB7/XTAL2/TOSC2 | D22 | digital_io[12]/analog_io[5] |
Pin-11 | PD5/SS[3]/OC0B(PWM1)/T1 | D5 | digital_io[13]/analog_io[6] |
Pin-12 | PD6/SS[2]/OC0A(PWM2)/AIN0 | D6 | digital_io[14]/analog_io[7] |
Pin-13 | PD7/A1N1 | D7 | digital_io[15]/analog_io[8] |
Pin-14 | PB0/CLKO/ICP1 | D8 | digital_io[16]/analog_io[9] |
Pin-15 | PB1/SS[1]OC1A(PWM3) | D9 | digital_io[17]/analog_io[10] |
Pin-16 | PB2/SS[0]/OC1B(PWM4) | D10 | digital_io[18]/analog_io[11] |
Pin-17 | PB3/MOSI/OC2A(PWM5) | D11 | digital_io[19]/analog_io[12] |
Pin-18 | PB4/MISO | D12 | digital_io[20]/analog_io[13] |
Pin-19 | PB5/SCK | D13 | digital_io[21]/analog_io[14] |
Pin-20 | AVCC | - | |
Pin-21 | AREF | analog_io[23] | |
Pin-22 | GND | - | |
Pin-23 | PC0/uartm_rxd/ADC0 | D14/A0 | digital_io[22]/analog_io[15] |
Pin-24 | PC1/uartm/ADC1 | D15/A1 | digital_io[23]/analog_io[16] |
Pin-25 | PC2/usb_dp/ADC2 | D16/A2 | digital_io[24]/analog_io[17] |
Pin-26 | PC3/usb_dn/ADC3 | D17/A3 | digital_io[25]/analog_io[18] |
Pin-27 | PC4/ADC4/SDA | D18/A4 | digital_io[26]/analog_io[19] |
Pin-28 | PC5/ADC5/SCL | D19/A5 | digital_io[27]/analog_io[20] |
Additional Pad used for Externam ROM/RAM/USB | |||
Sflash | sflash_sck | digital_io[28]/Analog[21] | |
SFlash | sflash_ss0 | digital_io[29]/Analog[22] | |
SFlash | sflash_ss1/AREF | digital_io[30]/Analog[23] | |
SFlash | sflash_ss2 | digital_io[31]/Analog[24] | |
SFlash | sflash_ss3 | digital_io[32]/Analog[25] | |
SFlash | sflash_io0 | digital_io[33]/Analog[26] | |
SFlash | sflash_io1 | digital_io[34]/Analog[27] | |
SFlash | sflash_io2 | digital_io[35]/Analog[28] | |
SFlash | sflash_io3 | digital_io[36] | |
DEBUG | dbg_clk_mon | digital_io[37] | |
SPARE | PA0 | digital_io[0] | |
SPARE | PA1 | D23 | digital_io[1] |
SPARE | PA2 | D24 | digital_io[2] |
SPARE | PA3 | digital_io[3] | |
SPARE | PA4 | D25 | digital_io[4] |
Riscduino SOC Integrated 32 Bits RISC V core. Initial version of Single core RISC-V core is picked from Syntacore SCR1 (https://github.com/syntacore/scr1)
Following Design changes are done on the basic version of syntacore RISC core
* Some of the sv syntex are changed to standard verilog format to make compatibile with opensource tool iverilog & yosys
* local Instruction Memory depth increased from 4 to 8 location
* Instruction Mem Request are changed from Single word to 4 Word Burst
* Multiplication and Divsion are changed to improve timing
* Additional pipe line stages added to improve the RISC timing closure near to 50Mhz
* 2KB instruction cache
* 2KB data cache
* Additional router are added towards instruction cache
* Additional router are added towards data cache
* Modified AXI/AHB interface to wishbone interface for instruction and data memory interface
* RV32I or RV32E ISA base + optional RVM and RVC standard extensions
* Machine privilege mode only
* 2 to 5 stage pipeline
* 2KB icache
* 2KB dcache
* Optional Integrated Programmable Interrupt Controller with 16 IRQ lines
* Optional RISC-V Debug subsystem with JTAG interface
* Optional on-chip Tightly-Coupled Memory
In Process - Looking for community help ...
RISC IMEM | RISC DMEM | EXT MAP | Target IP |
0x0000_0000 to 0x0FFF_FFFF | 0x0000_0000 to 0x0FFF_FFFF | 0x0000_0000 to 0x0FFF_FFFF | QSPI FLASH MEMORY |
0x1000_0000 to 0x1000_00FF | 0x1000_0000 to 0x1000_00FF | 0x1000_0000 to 0x1000_00FF | QSPI Config Reg |
0x1001_0000 to 0x1001_003F | 0x1001_0000 to 0x1001_003F | 0x1001_0000 to 0x1001_003F | UART |
0x1001_0040 to 0x1001_007F | 0x1001_0040 to 0x1001_007F | 0x1001_0040 to 0x1001_007F | I2C |
0x1001_0080 to 0x1001_00BF | 0x1001_0080 to 0x1001_00BF | 0x1001_0080 to 0x1001_00BF | USB |
0x1001_00C0 to 0x1001_00FF | 0x1001_00C0 to 0x1001_00FF | 0x1001_00C0 to 0x1001_00FF | SSPI |
0x1001_01C0 to 0x1001_013F | 0x1001_01C0 to 0x1001_013F | 0x1001_01C0 to 0x1001_013F | SSPI |
0x1002_0080 to 0x1002_00FF | 0x1002_0080 to 0x1002_00FF | 0x1002_0080 to 0x1002_00FF | PINMUX |
- | - | 0x3080_0000 to 0x3080_00FF | WB HOST |
Block | Total Cell | Combo | Seq |
---|---|---|---|
RISC | 47218 | 41230 | 5988 |
QSPI | 9039 | 7526 | 1513 |
UART_I2C_USB_SPI | 11793 | 8932 | 2861 |
WB_HOST | 6508 | 5356 | 1152 |
WB_INTC | 6949 | 5538 | 1411 |
PINMUX | 11932 | 9327 | 2605 |
PERIPHERAL | 5852 | 4791 | 1061 |
FPU | 12831 | 11394 | 1437 |
AES | 21549 | 17960 | 3589 |
BUS-REPEATER | 922 | 922 | 0 |
TOTAL | 134593 | 112976 | 21617 |
sudo apt update
sudo apt-get install apt-transport-https curl rtificates -agent software-properties-common
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
sudo apt-get install apt-transport-https curl ca-certificates software-properties-common
sudo apt update
apt-cache policy docker-ce
sudo apt install docker-ce
#Add User Name to docker
sudo usermod -aG docker <your user name>
# Reboot the system to enable the docker setup
git clone https://github.com/dineshannayya/riscduino.git
cd riscduino
git submodule init
git submodule update
make unzip
- Required openlane and pdk are moved inside the riscduino docker to avoid the external dependency.
- flow automatically pull the required docker based on MPW version.
- RTL to gds docker is hardcoded inside File: openlane/Makefile
OPENLANE_TAG = mpw9
OPENLANE_IMAGE_NAME = riscduino/openlane:$(OPENLANE_TAG)
- for MPW-9 caravel pdk and openlane avaible inside riscduino/openlane:mpw9 docker
- caravel, openlane and pdk envionment are automatically pointed to internal docker pointer
- To view the docker contents
docker run -ti --rm riscduino/openlane:mpw9 bash
cd /opt/pdk_mpw9 - pdk folder
cd /opt/caravel - caravel folder
cd /openlane - openlane folder
env - Show the internally defined env's
CARAVEL_ROOT=/opt/caravel
PDK_ROOT=/opt/pdk_mpw9
- Required caravel and pdk are moved inside the riscduino docker to avoid the external dependency.
- flow automatically pull the required docker based on MPW version.
- To view the docker contents
- RTL simulation docker hardcoded inside File: Makefile
simenv:
docker pull riscduino/dv_setup:mpw6
- for MPW-9 caravel and pdk avaible inside riscduino/dv_setup:mpw9 docker this is used for RTL to gds flows
- caravel and pdk envionment are automatically pointed to internal docker pointer
- To view the docker contents
docker run -ti --rm riscduino/dv_setup:mpw9 bash
cd /opt/pdk_mpw9 - pdk folder
cd /opt/caravel - caravel folder
env - Show the internally defined env's
CARAVEL_ROOT=/opt/caravel
PDK_ROOT=/opt/pdk_mpw6
Directory: OpenSTA (hacks/src/OpenSTA)
Source Files:
OpenLane/scripts/yosys/synth.tcl
OpenLane/configuration/synthesis.tcl
OpenLane/scripts/utils/utils.tcl
Modifield File:
hacks/clk_gating/synth.tcl
hacks/clk_gating/synthesis.tcl
hacks/clk_gating/utils.tcl
plugin
└── yosys
└── Lighter
├── clock_gating_plugin.cc
├── README.md
├── sky130_clkg_blackbox.v
└── sky130_ff_map.v
set ::env(SYNTH_ENB_CG) 1
grep sky130_fd_sc_hd__dlclkp <your netlist file>
The simulation package includes the following tests:
Examples:
make verify-wb_port - User Wishbone Test from caravel
make verify-risc_boot - User Risc core test from caravel
make verify-uart_master - User uart master test from caravel
make verify-user_basic - Standalone Basic signal and clock divider test
make verify-user_uart - Standalone user uart-0 test using user risc core
make verify-user_uart1 - Standalone user uart-0 test using user risc core
make verify-user_i2cm - Standalone user i2c test
make verify-user_risc_boot - standalone user risc core-0 boot test
make verify-user_pwm - standalone user pwm test
make verify-user_timer - standalone user timer test
make verify-user_sspi - standalone user spi test
make verify-user_qspi - standalone user quad spi test
make verify-user_usb - standalone user usb host test
make verify-user_gpio - standalone user gpio test
make verify-user_aes - standalone aes test with risc core-0
make verify-user_cache_bypass - standalone icache and dcache bypass test with risc core-0
make verify-user_uart_master - standalone user uart master test
make verify-user_sram_exec - standalone riscv core-0 test with executing code from data memory
make verify-riscv_regress - standalone riscv compliance test suite
make verify-arduino_risc_boot - standalone riscv core-0 boot using arduino tool set
make verify-arduino_hello_world - standalone riscv core-0 hello world test using arduino tool set
make verify-arduino_digital_port_control - standalone riscv core-0 digital port control using arduino tool set
make verify-arduino_ascii_table - standalone riscv core-0 ascii table using arduino tool set
make verify-arduino_character_analysis - standalone riscv core-0 character analysis using arduino tool set
make verify-arduino_multi_serial - standalone riscv core-0 multi uart test using arduino tool set
make verify-arduino_switchCase2 - standalone riscv core-0 switch case using arduino tool set
make verify-arduino_risc_boot - standalone riscv core-0 boot test using arduino tool set
make verify-arduino_string - standalone riscv core-0 string usage test using arduino tool set
make verify-user_uart SIM=RTL DUMP=OFF - Standalone user uart-0 test using user risc core with waveform dump off
make verify-user_uart SIM=RTL DUMP=ON - Standalone user uart-0 test using user risc core with waveform dump on
make verify-user_uart SIM=GL DUMP=OFF - Standalone user uart-0 test using user risc core with gatelevel netlist
make verify-user_uart SIM=GL DUMP=ON - Standalone user uart-0 test using user risc core with gatelevel netlist and waveform on
cd openlane
make pinmux
make qspim_top
make uart_i2cm_usb_spi_top
make wb_host
make wb_interconnect
make ycr_intf
make ycr_core_top
make ycr_iconnect
make user_project_wrapper
#Timing Analysis
make setup-timing-scripts
make install
make install_mcw
his will update Caravel design files and install the scripts for running timing.
make extract-parasitics
make create-spef-mapping
make caravel-sta
#Other Miscellaneous Targets The makefile provides a number of useful that targets that can run LVS, DRC, and XOR checks on your hardened design outside of openlane’s flow.
Run make help to display available targets.
Run lvs on the mag view,
make lvs-<macro_name>
Run lvs on the gds,
make lvs-gds-<macro_name>
Run lvs on the maglef,
make lvs-maglef-<macro_name>
Run drc using magic,
make drc-<macro_name>
Run antenna check using magic,
make antenna-<macro_name>
Run XOR check,
make xor-wrapper
Riscduino Soc flow uses Openlane tool sets.
yosys
- Performs RTL synthesisabc
- Performs technology mappingOpenSTA
- Pefroms static timing analysis on the resulting netlist to generate timing reportsinit_fp
- Defines the core area for the macro as well as the rows (used for placement) and the tracks (used for routing)ioplacer
- Places the macro input and output portspdn
- Generates the power distribution networktapcell
- Inserts welltap and decap cells in the floorplanRePLace
- Performs global placementResizer
- Performs optional optimizations on the designOpenPhySyn
- Performs timing optimizations on the designOpenDP
- Perfroms detailed placement to legalize the globally placed componentsTritonCTS
- Synthesizes the clock distribution network (the clock tree)FastRoute
- Performs global routing to generate a guide file for the detailed routerCU-GR
- Another option for performing global routing.TritonRoute
- Performs detailed routingSPEF-Extractor
- Performs SPEF extractionMagic
- Streams out the final GDSII layout file from the routed defKlayout
- Streams out the final GDSII layout file from the routed def as a back-upMagic
- Performs DRC Checks & Antenna ChecksKlayout
- Performs DRC ChecksNetgen
- Performs LVS ChecksCVC
- Performs Circuit Validity ChecksWe are looking for community help in following activity, interested user can ping me in efabless slack platform
RISCDUINO Score 4.6.1 June 24,2022, Dinesh A First fully arduino compatible based verification test case arudino_risc_boot added 4.6 June 13 2022, Dinesh A 1. icache and dcache bypass config addded 4.5 June 2 2022, Dinesh A 1. DFFRAM Replaced by SRAM 4.4 May 29 2022, Dinesh A 1. Digital PLL integrated and clock debug signal add @digitial io [33] port 4.3 May 24 2022, Dinesh A Re targetted the design to mpw-6 tools set and risc core logic are timing optimized to 100mhz 4.2 April 6 2022, Dinesh A 1. SSPI CS# increased from 1 to 4 2. uart port increase to two 3.9 Mar 16 2022, Dinesh A 1. 3 Timer added 2. Pinmux Register address movement 3. Risc fuse_mhartid is removed and internal tied inside risc core 4. caravel wb addressing issue restrict to 0x300FFFFF 3.8 Mar 10 2022, Dinesh A 1. usb chip select bug inside uart_* wrapper 2. in wb_host, increased usb clk ctrl to 4 to 8 bit 3.7 Mar 2 2022, Dinesh A 1. qspi cs# port mapping changed from io 28:25 to 25:28 2. sspi, bug fix in reg access and endian support added 3. Wishbone interconnect now support cross-connect feature 3.6 Feb 19, Dinesh A A. Changed Module: wb_host wishbone slave clock generation config increase from 3 to 4 bit support clock source selection B. Changed Module: qspim 1. Bug fix in spi rise and fall pulse relation w.r.t spi_clk. Note: Previous version work only with spi clock config = 0x2 2. spi_oen generation fix for different spi mode 3. spi_csn de-assertion fix for different spi clk div 3.5 Feb 16, Dinesh A As SRAM from sky130A is not yet qualified, Following changes are done A. riscv core cache and tcm interface changed to dffram B. removed the mbist controller + 4 SRAM C. mbist controller slave port in wb_intern removed D. Pinmux mbist port are removed E. mbist related buffering are removed at wb_inter 3.4 Feb 14, 2022, Dinesh A burst mode supported added in imem buffer inside riscv core We have created seperate repo from this onwards SRAM based SOC is spin-out to dineshannayya/riscduino_sram.git This repo will remove mbist + SRAM and RISC SRAM will be replaced with DFRAM 3.3 Feb 08, 2022, Dinesh A support added spisram support in qspim ip There are 4 chip select available in qspim CS#0/CS#1 targeted for SPI FLASH CS#2/CS#3 targeted for SPI SRAM 3.2 Feb 02, 2022, Dinesh A Bug fix around icache/dcache and wishbone burst access clean-up 3.1 Jan 15, 2022, Dinesh A Major changes in qspim logic to handle special mode 3.0 Jan 14, 2022, Dinesh A Moving from riscv core from syntacore/scr1 to yfive/ycr1 on sankranti 2022 (A Hindu New Year) 2.6 Jan 08, 2022, Dinesh A Pinmux Interrupt Logic change 2.5 Jan 06, 2022, Dinesh A TCM RAM Bug fix inside syntacore 2.4 Jan 01, 2022, Dinesh A LA[0] is added as soft reset option at wb_port 2.3 Dec 24, 2021, Dinesh A UART Master added with message handler at wb_host 2.2 Dec 20, 2021, Dinesh A 1. MBIST design issue fix for yosys 2. Full chip Timing and Transition clean-up 2.1 Dec 16, 2021, Dinesh A 1.4 MBIST controller changed to single one 2.Added one more SRAM to TCM memory 3.WishBone Interconnect chang to take care mbist changes 4.Pinmux change to take care of mbist changes 2.0 Dec 14, 2021, Dinesh A Added two more 2K SRAM added into Wishbone Interface 1.9 Dec 11, 2021, Dinesh A 2 x 2K SRAM added into Wishbone Interface Temporary ADC block removed 1.8 Nov 23, 2021, Dinesh A Three Chip Specific Signature added at PinMux Reg reg_22,reg_23,reg_24 1.7 Nov 15, 2021, Dinesh A Bug fix in clk_ctrl High/Low counter width Removed sram_clock 1.6 Nov 14, 2021, Dinesh A Major bug, clock divider inside the wb_host reset connectivity open is fixed 1.5 - 6th Nov 2021, Dinesh A Clock Skew block moved inside respective block due to top-level power hook-up challenges for small IP 1.4 - 13th Oct 2021, Dinesh A Basic verification and Synthesis cleanup 1.3 - 30th Sept 2021, Dinesh.A 2KB SRAM Interface added to RISC Core 1.2 - 29th Sept 2021, Dinesh.A 1. copied the repo from yifive and renames as riscdunino 2. Removed the SDRAM controlled 3. Added PinMux 4. Added SAR ADC for 6 channel 1.1 - 1st Aug 2021, Dinesh A usb1.1 host integrated part of uart_i2cm_usb module, due to number of IO pin limitation, Only UART/I2C/USB selected based on config mode 1.0 - 28th July 2021, Dinesh A i2cm integrated part of uart_i2cm module, due to number of IO pin limitation, Only UART OR I2C selected based on config mode 0.9 - 7th July 2021, Dinesh A Removed 2 Unused port connection io_in[31:30] to spi_master to avoid lvs issue 0.8 - 6th July 2021, Dinesh A For Better SDRAM Interface timing we have taping sdram_clock goint to io_out[29] directly from global register block, this help in better SDRAM interface timing control 0.7 - 28th June 2021, Dinesh A wb_interconnect master port are interchanged for better physical placement. m0 - External HOST m1 - RISC IMEM m2 - RISC DMEM 0.6 - 27th June 2021, Dinesh A Digital core level tie are moved inside IP to avoid power hook up at core level u_risc_top - test_mode & test_rst_n u_intercon - s*_wbd_err_i unused wb_cti_i is removed from u_sdram_ctrl 0.5 - 25th June 2021, Dinesh A Since carvel gives only 16MB address space for user space, we have implemented indirect address select with 8 bit bank select given inside wb_host core Address = {Bank_Sel[7:0], Wb_Address[23:0] caravel user address space is 0x3000_0000 to 0x30FF_FFFF 0.4 - 25th June 2021, Dinesh A Moved the pad logic inside sdram,spi,uart block to avoid logic at digital core level 0.3 - 20th June 2021, Dinesh A 1. uart core is integrated 2. 3rd Slave ported added to wishbone interconnect 0.2 - 17th June 2021, Dinesh A 1. In risc core, wishbone and core domain is created 2. cpu and rtc clock are generated in glbl reg block 3. in wishbone interconnect:- Stagging flop are added at interface to break wishbone timing path 4. buswidth warning are fixed inside spi_master modified rtl files are verilog/rtl/digital_core/src/digital_core.sv verilog/rtl/digital_core/src/glbl_cfg.sv verilog/rtl/lib/wb_stagging.sv verilog/rtl/syntacore/scr1/src/top/scr1_dmem_wb.sv verilog/rtl/syntacore/scr1/src/top/scr1_imem_wb.sv verilog/rtl/syntacore/scr1/src/top/scr1_top_wb.sv verilog/rtl/user_project_wrapper.v verilog/rtl/wb_interconnect/src/wb_interconnect.sv verilog/rtl/spi_master/src/spim_clkgen.sv verilog/rtl/spi_master/src/spim_ctrl.sv 0.1 - 16th Feb 2021, Dinesh A Initial integration with Risc-V core + Wishbone Cross Bar + SPI Master
Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright [yyyy] [name of copyright owner] Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.