Warning We inform you that big RTL modifications are in process to better parametrize CVA6. For deeper information, please refer to the https://github.com/openhwgroup/cva6/issues/1233 github issue :warning:
These changes will impact CVA6 interfaces (and top-level parameters). They will be performed progressively with several pull requests over a few weeks. To avoid integrating a moving target in their design, CVA6 users can therefore consider pointing to a specific GitHub hash during the changes (or investigate vendorization).
CVA6 is a 6-stage, single-issue, in-order CPU which implements the 64-bit RISC-V instruction set. It fully implements I, M, A and C extensions as specified in Volume I: User-Level ISA V 2.3 as well as the draft privilege extension 1.10. It implements three privilege levels M, S, U to fully support a Unix-like operating system. Furthermore, it is compliant to the draft external debug spec 0.13.
It has a configurable size, separate TLBs, a hardware PTW and branch-prediction (branch target buffer and branch history table). The primary design goal was on reducing critical path length.
The following instructions will allow you to compile and run a Verilator model of the CVA6 APU (which instantiates the CVA6 core) within the CVA6 APU testbench (corev_apu/tb).
Throughout all build and simulations scripts executions, you can use the environment variable NUM_JOBS
to set the number of concurrent jobs launched by make
:
NUM_JOBS
will default to 1, resulting in a sequential execution
of make
jobs;NUM_JOBS
to an explicit value, it is recommended not to exceed 2/3 of
the total number of virtual cores available on your system.git clone https://github.com/openhwgroup/cva6.git
cd cva6
git submodule update --init --recursive
:warning: It is strongly recommended to use the toolchain built with the provided scripts.
export RISCV=/path/to/toolchain/installation/directory
help2man
and device-tree-compiler
packages.For Debian-based Linux distributions, run :
sudo apt-get install help2man device-tree-compiler
pip3 install -r verif/sim/dv/requirements.txt
# DV_SIMULATORS is detailed in the next section
export DV_SIMULATORS=veri-testharness,spike
bash verif/regress/smoke-tests.sh
Simulating the CVA6 is done by using verif/sim/cva6.py
.
The environment variable DV_SIMULATORS
allows you to specify which simulator to use.
Four simulation types are supported:
You can set several simulators, such as :
export DV_SIMULATORS=veri-testharness,vcs-testharness,vcs_uvm
If exactly 2 simulators are given, their trace is compared (see the Regression tests section).
Here is how you can run the hello world C program with the Verilator model:
# Make sure to source this script from the root directory
# to correctly set the environment variables related to the tools
source verif/sim/setup-env.sh
# Set the NUM_JOBS variable to increase the number of parallel make jobs
# export NUM_JOBS=
export DV_SIMULATORS=veri-testharness
cd ./verif/sim
python3 cva6.py --target cv32a60x --iss=$DV_SIMULATORS --iss_yaml=cva6.yaml </span>
--c_tests ../tests/custom/hello_world/hello_world.c </span>
--linker=../tests/custom/common/test.ld </span>
--gcc_opts="-static -mcmodel=medany -fvisibility=hidden -nostdlib </span>
-nostartfiles -g ../tests/custom/common/syscalls.c </span>
../tests/custom/common/crt.S -lgcc </span>
-I../tests/custom/env -I../tests/custom/common"
You can run either assembly programs (check verif/test/custom/hello_world/custom_test_template.S
) or C programs. Run python3 cva6.py --help
to have more informations on the available parameters.
You can set the environment variable VERDI
as such if you want to launch Verdi while simulating with VCS:
export VERDI=1
The smoke-tests script installs a random instruction generator and several tests suites:
The regression tests are done by comparing a model simulation trace with the Spike trace.
Several tests scripts can be found in ./verif/regress
For example, here is how would run the riscv-arch-test regression test suite with the Verilator model:
export DV_SIMULATORS=veri-testharness,spike
bash verif/regress/dv-riscv-arch-test.sh
The logs from cva6.py are located in ./verif/sim/out_YEAR-MONTH-DAY
.
Assuming you ran the smoke-tests scripts in the previous step, here is the log directory hierarchy:
The regression test log summarizes the comparison between the simulator trace and the Spike trace. Beware that a if a test fails before the comparison step, it will not appear in this log, check the output of cva6.py and the logs of the simulation instead.
Waveform generation is currently supported for Verilator (veri-testharness
)
and VCS with full UVM testbench (vcs-uvm
) simulation types. It is disabled
by default to save simulation time and storage space.
To enable waveform generation for a supported simulation mode, set either
of the two shell variables that control tracing before running any of the
test scripts under verif/regress
:
export TRACE_FAST=1
enables "fast" waveform generation (keep simulation
time low at the expense of space). This will produce VCD files when using
Verilator, and VPD files when using Synopsys VCS with UVM testbench (vcs-uvm
).export TRACE_COMPACT=1
enables "compact" waveform generation (keep waveform
files smaller at the expense of increased simulation time). This will
produce FST files when using Verilator, and FSDB files when using Synopsys
VCS with UVM testbench (vcs-uvm
).To generate VCD waveforms of the smoke-tests
regression suite using Verilator, use:
export DV_SIMULATORS=veri-testharness,spike
export TRACE_FAST=1
bash verif/regress/smoke-tests.sh
After each simulation run involving Verilator or VCS, the generated waveforms
will be copied to the directory containing the log files (see above,) with
the name of the current HW configuration added to the file name right before
the file type suffix (e.g., I-ADD-01.cv32a60x.vcd
).
How to make cva6 synthesis ?
make -C pd/synth cva6_synth FOUNDRY_PATH=/your/techno/basepath/ TECH_NAME=yourTechnoName TARGET_LIBRARY_FILES="yourLib1.db\ yourLib2.db" PERIOD=10 NAND2_AREA=650 TARGET=cv64a6_imafdc_sv39 ADDITIONAL_SEARCH_PATH="others/libs/paths/one\ others/libs/paths/two"
Don't forget to escape spaces in lists. Reports are under: pd/synth/ariane/reports
core-v-verif
repository:warning: Warning: this chapter needs to be updated. See Github issue https://github.com/openhwgroup/cva6/issues/1358.
export DV_SIMULATORS=veri-testharness,spike
cva6/regress/smoke-tests.sh
make -C pd/synth cva6_synth FOUNDRY_PATH=/your/techno/basepath/ TECH_NAME=yourTechnoName TARGET_LIBRARY_FILES="yourLib1.db\ yourLib2.db" PERIOD=10 NAND2_AREA=650 TARGET=cv64a6_imafdc_sv39 ADDITIONAL_SEARCH_PATH="others/libs/paths/one\ others/libs/paths/two"
sed 's/module SyncSpRamBeNx64_1/module SyncSpRamBeNx64_2/' pd/synth/ariane_synth.v > pd/synth/ariane_synth_modified.v
cd cva6/sim
make vcs_clean
python3 cva6.py --testlist=../tests/testlist_riscv-tests-cv64a6_imafdc_sv39-p.yaml --test rv64ui-p-ld --iss_yaml cva6.yaml --target cv64a6_imafdc_sv39 --iss=spike,vcs-core-gate $DV_OPTS
We currently only provide support for the Genesys 2 board. We provide pre-build bitstream and memory configuration files for the Genesys 2 here.
Tested on Vivado 2018.2. The FPGA currently contains the following peripherals:
The ethernet controller and the corresponding network connection is still work in progress and not functional at the moment. Expect some updates soon-ish.
xc7k325t
)s25fl256xxxxxx0
ariane_xilinx.mcs
The first stage bootloader will boot from SD Card by default. Get yourself a suitable SD Card (we use this one). Either grab a pre-built Linux image from here or generate the Linux image yourself following the README in the ariane-sdk repository. Prepare the SD Card by following the "Booting from SD card" section in the ariane-sdk repository.
Connect a terminal to the USB serial device opened by the FTDI chip e.g.:
screen /dev/ttyUSB0 115200
Default baudrate set by the bootlaoder and Linux is 115200
.
After you've inserted the SD Card and programmed the FPGA you can connect to the serial port of the FPGA and should see the bootloader and afterwards Linux booting. Default username is root
, no password required.
To generate the FPGA bitstream (and memory configuration) yourself for the Genesys II board run:
make fpga
This will produce a bitstream file and memory configuration file (in fpga/work-fpga
) which you can permanently flash by running the above commands.
You can debug (and program) the FPGA using OpenOCD. We provide two example scripts for OpenOCD below.
To get started, connect the micro USB port that is labeled with JTAG to your machine. This port is attached to the FTDI 2232 USB-to-serial chip on the Genesys 2 board, and is usually used to access the native JTAG interface of the Kintex-7 FPGA (e.g. to program the device using Vivado). However, the FTDI chip also exposes a second serial link that is routed to GPIO pins on the FPGA, and we leverage this to wire up the JTAG from the RISC-V debug module.
If you are on an Ubuntu based system you need to add the following udev rule to
/etc/udev/rules.d/99-ftdi.rules
SUBSYSTEM=="usb", ACTION=="add", ATTRS{idProduct}=="6010", ATTRS{idVendor}=="0403", MODE="664", GROUP="plugdev"
Once attached to your system, the FTDI chip should be listed when you type lsusb
:
Bus 005 Device 019: ID 0403:6010 Future Technology Devices International, Ltd FT2232C/D/H Dual UART/FIFO IC
If this is the case, you can go on and start openocd with the fpga/ariane.cfg
configuration file:
openocd -f fpga/ariane.cfg
Open On-Chip Debugger 0.10.0+dev-00195-g933cb87 (2018-09-14-19:32) Licensed under GNU GPL v2 For bug reports, read http://openocd.org/doc/doxygen/bugs.html adapter speed: 1000 kHz Info : auto-selecting first available session transport "jtag". To override use 'transport select <transport>'. Info : clock speed 1000 kHz Info : TAP riscv.cpu does not have IDCODE Info : datacount=2 progbufsize=8 Info : Examined RISC-V core; found 1 harts Info : hart 0: XLEN=64, misa=0x8000000000141105 Info : Listening on port 3333 for gdb connections Ready for Remote Connections Info : Listening on port 6666 for tcl connections Info : Listening on port 4444 for telnet connections Info : accepting 'gdb' connection on tcp/3333
Then you will be able to either connect through telnet
or with gdb
:
riscv64-unknown-elf-gdb /path/to/elf
(gdb) target remote localhost:3333 (gdb) load Loading section .text, size 0x6508 lma 0x80000000 Loading section .rodata, size 0x900 lma 0x80006508 (gdb) b putchar (gdb) c Continuing.
Program received signal SIGTRAP, Trace/breakpoint trap. 0x0000000080009126 in putchar (s=72) at lib/qprintf.c:69 69 uart_sendchar(s); (gdb) si 0x000000008000912a 69 uart_sendchar(s); (gdb) p/x $mepc $1 = 0xfffffffffffdb5ee
You can read or write device memory by using:
(gdb) x/i 0x1000
0x1000: lui t0,0x4
(gdb) set {int} 0x1000 = 22
(gdb) set $pc = 0x1000
CVA6 has preliminary support for the OpenPiton distributed cache system from Princeton University. To this end, a different L1 cache subsystem (src/cache_subsystem/wt_cache_subsystem.sv
) has been developed that follows a write-through protocol and that has support for cache invalidations and atomics.
The corresponding integration patches will be released on OpenPiton GitHub repository. Check the README
in that repository to see how to use CVA6 in the OpenPiton setting.
To activate the different cache system, compile your code with the macro DCACHE_TYPE
.
The zero stage bootloader (ZSBL) for RTL simulation lives in bootrom/
while the bootcode for the FPGA is in fpga/src/bootrom
. The RTL bootcode simply jumps to the base of the DRAM where the FSBL takes over. For the FPGA the ZSBL performs additional housekeeping. Both bootloader pass the hartid as well as address to the device tree in argumen register a0
and a1
respectively.
To re-generate the bootcode you can use the existing makefile within those directories. To generate the SystemVerilog files you will need the bitstring
python package installed on your system.
The directory structure separates the CVA6 RISC-V CPU core from the CORE-V-APU FPGA Emulation Platform.
Files, directories and submodules under cva6
are for the core only and should not have any dependencies on the APU.
Files, directories and submodules under corev_apu
are for the FPGA Emulation platform.
The CVA6 core can be compiled stand-alone, and obviously the APU is dependent on the core.
The top-level directories of this repo:
local
for common files that are hosted in this repo and submodules
that are hosted in other repos.core
testbench and uvmt_cva6
UVM verification environment.Go to the CVA6 Kanban Board which also loosely tracks planned improvements.
We highly appreciate community contributions.
To ease the work of reviewing contributions, please review CONTRIBUTING.
If you find any problems or issues with CVA6 or the documentation, please check out the issue tracker and create a new issue if your problem is not yet tracked.
If you use CVA6 in your academic work you can cite us:
``` @article{zaruba2019cost, author={F. {Zaruba} and L. {Benini}}, journal={IEEE Transactions on Very Large Scale Integration (VLSI) Systems}, title={The Cost of Application-Class Processing: Energy and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core in 22-nm FDSOI Technology}, year={2019}, volume={27}, number={11}, pages={2629-2640}, doi={10.1109/TVLSI.2019.2926114}, ISSN={1557-9999}, month={Nov}, } ```
Check out the acknowledgements.